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Abstract— Recognizing human activity is one of the important areas of computer vision research today. It plays a vital role in constructing 
intelligent surveillance systems. Despite the efforts in the past decades, recognizing human activities from videos is still a challenging task. 
Human activity may have different forms ranging from simple actions to complex activities. Recently released depth cameras provide 
effective estimation of 3D positions of skeletal joints in temporal sequences of depth maps. In this paper, a system for human activity 
recognition is proposed. We have considered the task of obtaining a descriptive labeling of the activities being performed through labeling 
human sub-activities. The activities we consider happen over a long period, and comprise several sub-activities performed in a sequence. 
The proposed activity descriptor makes the activity recognition problem viewed as a sequence classification problem. The proposed 
system employs Hidden Markov Models (HMMs) to recognize human activities. The system is evaluated on two benchmark datasets for 
daily living activity recognition. Experiment results demonstrate that the proposed system outperforms the state-of-the-art methods. 

Index Terms— Activity Recognition, Behavior Analysis, Depth Images, HMM, MSVM, RGB-D, Video Surveillance   

——————————      —————————— 

1 INTRODUCTION                                                                     
ECENTLY, surveillance systems have been very 
useful in all public and private sectors.  The increas-
ing global security concerns have resulted in more 

research in samrt surveillance. It has a wide range of 
applications including effective monitoring of public 
places such as airports, railway stations, shopping malls, 
crowded sports arenas, military installations, etc., or for 
use in smart healthcare facilities such as daily activity 
monitoring and fall detection in old people’s homes [1]. 
Conseqently, there is an urgent need to analyze human 
behaviors in video surveillance systems automatically. 
Human monitoring of surveillance video is a very labor-
intensive task. Detecting multiple activities in real-time 
video is difficult in manual analysis. Thus, the intelligent 
video surveillance system is emerged. Automatic behav-
ior analysis involves the analysis and the recognition of 
motion patterns to produce a high-level description of 
actions and interactions among objects [2]. Despite sig-
nificant research efforts over the past few decades, action 
recognition remains a highly challenging problem. The 
difficulties of action recognition come from several as-
pects [3, 4]. Firstly, human motions are represented in a 
very high dimensional space. Moreover, interactions 
among different subjects complicate searching in this 
space. Secondly, performing similar or identical activi-
ties by different subjects exhibit substantial variations. 
Thirdly, visual data from traditional video cameras can 
only capture projective information of the real world, 
and are sensitive to lighting conditions. 
The problem of behavior analysis is addressed under 
different terms. In the literature, action recognition and 
activity recognition are the most common used terms [2, 
5]. The term action is often confused with the term activ-

ity. Action usually refers to a sequence of primitive 
movements carried out by a single object, that is, an 
atomic movement that can be described at the limb level 
[5], such as a walking step. However, activity contains a 
number of sequential actions. i.e., dancing activity con-
sists of successive repetitions of several actions, e.g. 
walking, jumping, waving hand, etc. Actions can be 
placed on a lower level than activities. Approaches for 
recognizing activities are often hierarchical in nature. 
They use previously recognized actions as their input. 
Different approaches are used to recognize low-level 
actions [6]. Some approaches use every single frame (2D 
templates, 3D object models), while others look at the 
entire video (spatio-temporal filtering, sub-volume 
matching). These techniques extract features and match 
them to a template in order to recognize an action. Other 
techniques, such as hidden Markov models (HMMs), 
estimate a model on the temporal dynamics of an action. 
The model parameters are learned from training data.  
From a representation simplicity viewpoint, low-level 
features (such as pixels) and spatiotemporal features 
have achieved promising performances on some of the 
benchmark datasets. Actually, low-level features benefit 
from the fact that they are generally easy to extract. 
However, they are unable to handle the temporal struc-
ture of the action/ behavior. Thus, there is a need for a 
higher-level analysis to construct a suitable temporal 
model. Mid and high-level representations can bridge 
this gap. One of the most common methods for repre-
senting human action is the use of human’s skeletal in-
formation. In the past, extracting accurate skeletal in-
formation from video streams was very difficult and 
unreliable, especially for arbitrary human poses. In con-
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trast, motion capture systems could provide very accu-
rate skeletal information of human actions based on ac-
tive or passive markers positioned on the body [7]. 
However, the data acquisition was limited to controlled 
indoor environments. Hence, skeletal-based recognition 
methods became less popular over the years as com-
pared to the image feature-based recognition methods 
[7]. The latter methods extract spatiotemporal interest 
points from video images and the recognition is based 
on learned statistics on large datasets. Lately, new tech-
nologies help to enhance the monitoring process creating 
systems that are more powerful in detecting dangerous 
situations. With the release of several low-cost 3D cap-
turing systems, such as the Microsoft Kinect, real time 
3D data acquisition and skeleton extraction have become 
much easier and more practical for action recognition, 
thus restoring interest in the skeleton-based action 
recognition. 
 
In this paper, a system for human activity recognition is 
proposed. Actually, we extend our previous work pre-
sented in [8] by focusing on recognizing complex activi-
ties as a sequence of basic actions. The proposed system 
presents a human activity descriptor based on the hu-
man’s skeletal information extracted from Microsoft Ki-
nect. This representation of the human activity is invari-
ant to the scale of the subjects/objects and the orienta-
tion to the camera, while it maintains the correlation 
among different body parts.  Hidden Markov Models 
(HMMs) are employed to recognize human activities. 
For each activity class, a HMM is learned. In the classifi-
cation step, an unknown activity descriptor is aligned 
with the HMM in each class. An unknown sequence will 
be classified into the class, which has the highest align-
ment score. 
The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview about RGB-D sensor and depth 
images pointing out their advantages over the intensity 
images. In Section 3, we briefly review some related 
work in human activity recognition. Section 4 then pre-
sents the proposed system. The performance analysis of 
the proposed system is empirically evaluated in Section 
5. Finally, we conclude in Section 6. 

2 RGB-D SENSOR 
The RGB-D sensor (such as Microsoft Kinect) is a mo-

tion-capture device that provides the 3D location and 
skeleton posture of the human body [9]. The Kinect sen-
sor produces a new type of data, RGB-D data, which is 
an improvement on RGB images for human behavior 
recognition research. Its name is a combination of kinetic 
and connects [10]. It was initially used as an input device 
by Microsoft for the Xbox game console. All user move-
ments are captured and reflected on-screen. It enables 
the user to interact and control software on the Xbox 360 

with gestures recognition and voice recognition. The 
Kinect’s output is a multi-modal signal, which gives 
RGB videos, depth sequences and skeleton information 
simultaneously. Recently, the computer vision commu-
nity discovered that the depth sensing technology of 
Kinect could be extended far beyond gaming and at a 
much lower cost than traditional 3D cameras (such as 
stereo cameras and Time-Of-Flight cameras) [11]. Prior 
to the Kinect, a 3D laser scanner was the primary device 
to capture accurate 3D depth data of a scene. However, 
the huge volume and high price of the laser scanner re-
strict its usage in many applications [4]. Another alterna-
tive is the use of a stereo vision system consisting of two 
cameras to get 3D information. Nevertheless, the resolu-
tion of the cameras, the calibration of the system and the 
required heavy computations increase the complexity of 
the system and greatly affect the accuracy of the 3D 
depth data [4]. 
 
Figure 1 shows the Kinect sensor and the RGB-D data 
captured including both RGB color image and depth 
image. A time of flight camera is implicitly embedded in 
the Kinect. It measures the distance of any given point 
from the sensor using the time taken by near-IR light to 
reflect from the object. In addition to it, an IR grid is pro-
jected across the scene to obtain deformation infor-
mation of the grid to model surface curvature. A depth 
image (or depth map) is an image that contains infor-
mation relating to the distance of the surfaces of scene 
objects from a viewpoint [12]. Pixels in a depth image 
indicate calibrated depth in the scene, rather than a 
measure of intensity or color. The device is actually 
composed of multiple sensors. In the middle, it has a 
RGB camera allowing a resolution up to 1280×960 at 12 
images per second [10]. The usual used resolution is 
640×480 pixels at 30 images per second maximum for 
colored video stream as the depth camera has a maxi-
mum resolution of 640×480 at 30 frames per second. A 
little away on the left of the device, It has the IR light 
(projector). It projects multiple dots, which allow the 
final camera on the right side, the CMOS depth camera, 
to compute a 3D environment. The device is mounted 
with a motorized tilt to adjust the vertical angle. 
 

RGB Camera 

Depth Image RGB Color Image 

3D Depth sensor 
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Fig. 1. RGB-D data captured by Kinect 

One of the major components of the Kinect sensor is its 
ability to infer human motion by extracting human sil-
houettes in skeletal structures. It extracts the skeletal 
joints of a human body as 3D points using the Microsoft 
SDK. It provides a skeleton model with 20 joints as 
shown in Figure 2. The complementary nature of the 
depth and visual RGB information provided by Kinect 
initiates new solutions for classical problems in comput-
er vision. The availability of depth information allows 
researchers to implement simpler identification proce-
dures to detect human subjects. The advantages of this 
technology, with respect to classical video-based ones, 
are [13]:  
 Being less sensitive to variations in light intensity and 

texture changes;  
 Providing 3D information by a single camera, while a 

stereoscopic system is necessary in the RGB domain 
to achieve the same goal;  

 Maintaining privacy, it is not possible to recognize 
the facial details of the people captured by the depth 
camera. This feature helps to keep identity confiden-
tial. 
 
 

ID Joint  

 

1 HipCenter  
2 Spine  
3 ShoulderCenter  
4 Head  
5 ShoulderLeft  
6 ElbowLeft  
7 WristLeft  
8 HandLeft  
9 ShoulderRight  

10 ElbowRight  
11 WristRight  
12 HandRight  
13 HipLeft  
14 KneeLeft  
15 AnkleLeft  
16 FootLeft  
17 HipRight  
18 KneeRight  
19 AnkleRight  
20 FootRight  

 
Fig. 2. Skeleton joints tracked by the Kinect Sensor using Microsoft 

SDK 

3 LITERATURE REVIEW  
During the past few years, a rich palette of diverse 

ideas has been proposed on the problem of recognition 
of human activities by employing different types of vis-
ual information. However, the problem is still open and 
provides a big challenge to the researchers and more 
rigorous research is needed to come around it. An over-
view of the various action recognition methods and 
available well-known action datasets are provided in [14, 
15]. Most previous research in action recognition was 
based on color or greyscale intensity images. These im-
ages are obtained from traditional RGB cameras, where 

the value of each pixel represents the intensity of incom-
ing light. It contains rich texture and color information, 
which is very useful for image processing, however it is 
very sensitive to illumination changes. 
Recently, there have been vision technologies that can 
capture distance information from the real world, which 
cannot be obtained directly from an intensity image. 
These images are obtained from depth cameras, where 
the value of each pixel represents the calibrated distance 
between camera and scene. An advantage of using these 
sensors is that they give depth at every pixel so the 
shape of the object can be measured. When using depth 
images, computer vision tasks like background subtrac-
tion and contour detection become easier. Actually, there 
are many attractive progresses and improves have been 
done with the use of depth information.  
 
Based on the above, there are two main approaches for 
human behavior recognition: RGB video-based approach 
[15] and depth map-based approach [3, 4]. In this sec-
tion, we focus only on reviewing the state-of-the-art 
techniques that investigate the applicability and benefit 
of depth sensors for action recognition. In [16] Sung et al. 
present a two-layered Maximum Entropy Markov Model 
(MEMM). It models different properties of the human 
activities, including their hierarchical nature, the transi-
tions between sub-activities over time, and the relation 
between sub-activities and different types of features. 
They use a RGBD sensor (Microsoft Kinect) as the input 
sensor, and compute a set of features based on human 
pose and motion, as well as based on image and point-
cloud information. During inference, their algorithm 
exploits the hierarchical nature of human activities to 
determine the best MEMM graph structure. It infers the 
two-layered graph structure using a dynamic program-
ming approach. 

 
Also, Ni et al. [17] propose a complex activity recogni-
tion and localization framework that fuses information 
from both grayscale and depth image channels at multi-
ple levels of the video processing pipeline. In the indi-
vidual visual feature detection level, depth-based filters 
are applied to the detected human/object rectangles to 
remove false detections. In the next level of interaction 
modeling, 3-D spatial and temporal contexts among hu-
man subjects or objects are extracted by integrating in-
formation from both grayscale and depth images. Depth 
information is utilized to distinguish different types of 
indoor scenes. Finally, a latent structural model is devel-
oped to integrate the information from multiple levels of 
video processing for an activity detection. 
 
Gupta et al. [18] prsent a method to classify human ac-
tivities by leveraging on the cues available from depth 
images alone. They propose a descriptor, which couples 
depth and spatial information of the segmented body to 
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describe a human pose. Unique poses (codewords) are 
then identified by a spatial-based clustering step. Given 
a video sequence of depth images, they segment humans 
from the depth images and represent these segmented 
bodies as a sequence of codewords. They exploit unique 
poses of an activity and the temporal ordering of these 
poses to learn subsequences of codewords, which are 
strongly discriminative for the activity. Each discrimina-
tive subsequence acts as a classifier and they learn a 
boosted ensemble of discriminative subsequences to as-
sign a confidence score for the activity label of the test 
sequence.  

 
Morover, Koppula et al. [19] consider the task of jointly 
labeling human sub-activities and object affordances in 
order to obtain a descriptive labeling of the activities 
being performed in the RGB-D videos. They jointly 
model the human activities and object affordances as a 
Markov Random Field (MRF) where the nodes represent 
objects and sub-activities, and the edges represent the 
relationships between object affordances, their relations 
with sub-activities, and their evolution over time. The 
parameters of the model are learned using a structural 
SVM formulation. Their model also incorporates the 
temporal segmentation problem by computing multiple 
segmentations and considering labeling over these seg-
mentations as latent variables.  

 
In [20], Koppula and Saxena extended the work present-
ed in [19] by detecting the past human activities as well 
as anticipating the future human activities using object 
affordances. In the detection process, they present a 
method to first obtain potential graph structures that are 
close to the ground-truth ones by approximating the 
graph with only additive features. Starting with this 
graph structure, they then design moves to obtain sever-
al other likely graph structures to be used in the antici-
pating process. 

 
In [21], Hu et al. present a latent discriminative model 
for human activity recognition. The parameters of the 
graphical model are learned with the Structured-Support 
Vector Machine (Structured-SVM). A data-driven ap-
proach is used to initialize the latent variables, thereby 
no hand labeling for the latent states is required. By 
making the observation and state nodes fully connected, 
the model do not require any conditional independence 
assumption between latent variables and the observa-
tions. 

4 PROPOSED SYSTEM 
The proposed method focuses on obtaining a descrip-

tive labeling of the complex human activities that take 
place over different time scales and consist of a sequence 
of sub-activities (actions). In fact, human activity recog-

nition is a challenging task since it needs to face with 
numerous varieties. First, the variation in the length of 
an action where different individuals perform actions at 
diverse rate. Second is differences in the characteristics 
of the human body such as body shape, height, weight 
fitting, etc. Third is the ambiguity caused by the similari-
ty of some activities, which represents a great challenge 
for any recognition system. Moreover, environment set-
tings and video quality should be considered. For exam-
ple, dynamic backgrounds and cluttered environments 
are always difficult to handle in any video processing 
application. Other factors such as lighting condition, 
camera viewpoint, and camera motion should also be 
addressed properly. 
 
In fact, our previous work in [8] focuses on recognizing 
actions that span short time periods. However, in this 
paper, the proposed system extends that work by per-
forming a high-level activity recognition. These activities 
take place over a long period and consist of a sequence 
of sub-activities. The proposed system employs the hu-
man action representation presented in [8] to recognize 
complex activities. This representation is characterized 
by its low dimensionality and its invariance to the scale 
of the subjects/objects and the orientation to the camera, 
while it maintains the correlation among different body 
parts. It is based on the human’s skeletal information 
extracted from depth images. The basic idea of the pro-
posed system depends on the fact that each activity con-
sists of a sequence of sub-activities (actions) that change 
over the course of performing the activity. The proposed 
system recognizes these actions independently. Then, an 
activity descriptor is constructed from these actions as an 
ordered sequence. Initially, the descriptor is empty. 
Then, every detected action is added in order to the se-
quence. Later, trained Hidden Markov Models (HMMs) 
are used for recognizing unknown activities. 
 
Figure 3 shows the block diagram of the proposed sys-
tem. First, the system starts with identifying the skeleton 
joints coordinates for each detected object in the video 
sequence. Actually, the Kinect camera tracks 20 body 
joints for each object in the scene. The position of the 
skeleton joints are provided as Cartesian coordinates (X, 
Y, Z) with respect to a coordinate system centered at the 
Kinect. The positive Y axis points up, the positive Z axis 
points where the Kinect is pointing, and the positive X 
axis is to the left as shown in Figure 4. 
 
Second, the proposed system constructs the feature vec-
tor for each detected skeleton in the scene. Ideally, a sub-
ject should be straight in front of Kinect camera (Figure 
5.a) but this is not always the case. The subject can be at 
any angle from Kinect (Figure 5.b) and at any distance. 
To overcome this issue, the proposed system rotates all 
the skeleton points around Y-axis in a counterclockwise 
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direction with an angle α in order to make the subject 
straight in front of depth camera. Hence, rotation invari-
ance is achieved. This angle is defined as the angle be-
tween the line connecting both shoulders and the posi-
tive direction of X-axis of Kinect coordinates system 
(Figure 5.b). Initially, the angle α is estimated using the 
coordinates of two joints: shoulder left (𝑥𝐿 ,𝑦𝐿 , 𝑧𝐿) and 
shoulder right(𝑥𝑅,𝑦𝑅 , 𝑧𝑅) through the following equa-
tion: 
 

∝= tan−1 �
𝑧𝑅 − 𝑧𝐿
𝑥𝑅 − 𝑥𝐿

� 

 
 
 

 
Fig. 3. The block diagram of the proposed system 

 

Fig. 4. Kinect Cartesian coordinate system 

 
(a) The subject facing the depth camera 

 

(b) The subject at an angle with respect to the depth camera 

 
Fig. 5. Rotation of the skeleton with respect to the Kinect 

Then a counterclockwise rotation about Y-axis is applied 
to all skeleton joints with an angle α. For each skeleton 
joint 𝑖 with coordinates(𝑥𝑖 ,𝑦𝑖 , 𝑧𝑖), the rotated coordinates 
(𝑥𝑖′,𝑦𝑖′ ,𝑧𝑖′) are calculated with the following transfor-
mation:  
 

�

𝑥𝑖′

𝑦𝑖′

𝑧𝑖′
1

� = �

cos ∝ 0 sin ∝ 0
0 1 0 0

− sin ∝ 0 cos ∝ 0
0 0 0 1

� �

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

� 

 
Moreover, varying the object distance from Kinect makes 
the action recognition more sophisticated. Therefore, it is 
necessary to shift the origin of the coordinates from Ki-
nect to a point in the object body to remove dependence 
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on camera position. This means joints coordinates 
should be translated to another coordinate system where 
its origin is a point in the human body rather than the 
Kinect camera.  By this way, the distance factor between 
the object and Kinect is neutralized. This permits the 
coordinates to be expressed invariantly to translation 
and rotation of the body with respect to the camera ref-
erence system. In our proposed system, we use the 
shoulder center joint as the origin of the new system (see 
Figure 2). Assume that shoulder center joint coordinates 
are (𝑥, 𝑦, 𝑧). Hence for each skeleton joint 𝑖 with coordi-
nates (𝑥𝑖 ,𝑦𝑖 , 𝑧𝑖), the translated coordinates (𝑥𝑖′,𝑦𝑖′ , 𝑧𝑖′) are 
calculated with the following equation: 
 

(𝑥𝑖′,𝑦𝑖′ , 𝑧𝑖′) = (𝑥𝑖 − 𝑥, 𝑦𝑖 − 𝑦, 𝑧𝑖 − 𝑧) 
 

Moreover, the individual variations of people in terms of 
posture, height and dimensions have a huge impact on 
the performance of the action recognition system. This is 
because X, Y and Z coordinates of joints of every object 
doing the same action might be different. Therefore, it is 
necessary to normalize the data to increase accuracy of 
action recognition. To simplify the normalization pro-
cess, the joints coordinates are converted from Cartesian 
coordinate system to spherical coordinate system. The 
spherical coordinate system is a three dimensional space 
system with three components: the distance of the point 
from the origin (radial distance r), the polar angle (φ), 
and the azimuth angle (θ) as shown in Figure 6. When 
normalizing a point in Cartesian coordinates, all the 
components X, Y and Z are changed. However when 
normalizing a point in the spherical coordinates, only 
radial distance r will equal to one while both polar angle 
(φ) and azimuth angle (θ) will remain constant.. 
 
Feature vectors provide a set of characteristics that rep-
resent the action to be recognized. However, it may in-
clude irrelevant or redundant information which could 
complicate the classification. Reducing the feature vector 
size has an important impact on the processing time 
since the recognition is performed faster. Concerning the 
skeletal data obtained with depth sensor devices, it can 
be seen that some joints are more important than others 
if action recognition is targeted. Several joints in the tor-
so (the skeleton part identified by a dashed line in Figure 
7) do not show an independent motion along with the 
whole body. Hence, in our proposed system, seven joints 
coordinates of the human skeleton are discarded from 
the feature vector. These joints are shown as solid circles 
in Figure 7: shoulder right, shoulder center, shoulder 
left, spine, hip center, hip right, and hip left (from left-to-
right and from top-to-bottom respectively). This dimen-
sionality reduction of the feature vector improves the 
classification performance. Since the joints coordinates 
are normalized, radial distance r can be ignored in our 
feature vector. Thus, the feature vector will consist of 13 

pairs of (φ , θ ) for each detected object in the scene. This 
means it has only 26 components which is a reduced 
feature vector than what is reported in the state-of-the-
art methods [16-21]. A low-dimensional representation 
means less computational effort. 
 

𝑟 = �𝑥2 + 𝑦2, 𝑧2 ,     𝜃 = cos−1 �𝑧
𝑟
� ,    𝜑 = tan−1 �𝑦

𝑥
� 

 
Fig. 6. Spherical coordinates (r, θ, φ): radial distance r, azimuthal 

angle θ, and polar angle φ 

 

Fig. 7. Torso skeleton joints discarded from the feature vector 

After a feature vector is constructed, a classification step 
is needed to recognize different actions. The feature vec-
tor of the unknown action is used as input to the classifi-
er whose objective is to accurately identify which action 
class is best matched against the input. In our proposed 
system, a Multi-class Support Vector Machine (MSVM) 
[22-24] is employed to perform action classification. The 
MSVM used is based on One-Against-All (OAA) classifi-
cation approach [23] where there is one binary SVM for 
each class to separate members of that class from mem-
bers of other classes. A data point would be classified 
under a certain class if and only if that class's SVM ac-
cepted it and all other classes' SVMs rejected it. A train-
ing step is needed to summarize the similarity within 
(and dissimilarity in-between) the training samples of 
different action classes. With action models learned, a 
new action instance can be recognized as one of the 
learned classes. 
 
Once an action is recognized, it is a candidate to be a 
part of a more complex activity. This is because a human 

Torso 
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activity is actually a series of human actions. In order to 
recognize this activity, the proposed system constructs 
and maintains an activity descriptor. It is simply an or-
dered list of the detected actions and it satisfies two cri-
teria. First, adjacent actions in the activity descriptor are 
not allowed to be the same. However, the activity de-
scriptor may contain the same action more than one time 
but not adjacent. Second, the activity descriptor is varia-
ble length with a special notion of order since not all 
activities consist of the same number of actions. Howev-
er, a minimum and a maximum size of the descriptor is 
initially predetermined from the training set. Initially, 
the activity descriptor is an empty set and it is updated 
each time either an action or an activity is recognized.  
 
Considering the nature of the proposed activity de-
scriptor, the problem of recognizing activities can be 
formulated as a sequence classification problem. Given L 
as a set of class labels, the task of sequence classification 
is to learn a sequence classifier C, which is a function 
mapping of a sequence s to a class label l ∈ L, written as, 
C : s  l; l ∈ L. In the proposed system, HMMs are em-
ployed for performing action recognition, due to their 
suitability for modeling pattern recognition problems 
that exhibit an inherent temporality. HMMs are one of 
the most popular generative models used for classifica-
tion. It is a doubly stochastic process [25]. The underly-
ing stochastic process is not observable but can be ob-
served through another set of stochastic processes that 
produce the sequence of observed symbols [25]. The un-
derlying hidden stochastic process is a first-order Mar-
kov process; that is, each hidden state depends only on 
the previous hidden state. Moreover, in the observed 
stochastic process, each observed measurement (symbol) 
depends only on the current hidden state. The use of 
HMMs includes two stages: learning and recognition. In 
the learning stage, the data are used to optimize the pa-
rameters of the HMM of each activity (class). That is, it 
involves developing a model for all of the activities that 
we want to recognize. In the recognition stage, the HMM 
of each class computes the probability of generating a 
test sequence, and the model which has the maximum 
probability is chosen.  
 
Back to Figure 3, when an action is recognized, the ac-
tion is appended to the activity descriptor provided it 
does not match the last action in the descriptor. If the 
descriptor size is less than the minimum size, the pro-
posed system will proceed to the next frame to detect 
more actions to be added to the descriptor. Otherwise, 
when the descriptor reaches the minimum size, it is a 
candidate to be an activity. At this point, the activity 
descriptor is checked against all the trained HMMs to 
calculate the likelihood and the one having highest 
probability is chosen. Thus, to test an activity descriptor 
sequence AD, the HMMs act as: 

 
𝐴𝐴𝐴 = arg max

𝑖=1,2,…,𝑁
{𝑃(𝐴𝐴|𝐻𝑖)}   

 
where the activity label (AcL) is based on the probability 
of the activity descriptor (AD) on corresponding trained 
activity HMM 𝐻𝑖. When an activity is recognized, the 
proposed system resets the descriptor. It becomes empty 
again and ready for receiving more actions of the next 
activity.  However, if the activity is not recognized, so 
the actions in the descriptor are not sufficient to recog-
nize the activity. In this case, the descriptor size is 
checked against reaching to the maximum size. If so, the 
first action in the descriptor is dropped leaving the emp-
ty space for adding one more action. Otherwise. The 
proposed system proceeds to the next frame to recognize 
next actions. In this way, the system is able to recognize 
different human activities. 
  
In surveillance applications, activities of interest usually 
occur rarely. Suspicious activity may take many different 
forms. It can be classified as either being normal activity 
but appeared in a different context or being abnormal 
and unexpected activity occureed rarely. Figure 8 shows 
a simple procedure used by our proposed system to 
classify the detected activity as either suspicious or not. 
It is invoked after the recognition system outputs its re-
sults. 
For the first type, it should be noted that the definition of 
unusual activities is rather subjective. What is consid-
ered suspicious on one place may be normal activity on 
another place. For example, the “Runing” activity in a 
bank hall is considered suspicious while it is normal ac-
tivity in a stadium or in a park. Also, the “Loitering” 
activity (random walk) around schools, parking lots or 
secluded areas is considered suspicious while it is nor-
mal activity if an individual is waiting for a bus at a ter-
minal or if a person is going for a walk in a park. Even 
“walking” activity can be considered suspicious if it was 
a walk in a restricted area. This type of activities can be 
easily recognized by our proposed system since they are 
actually well defined activities. A list of suspicious activ-
ities is initially predetermined and the system can be 
trained efficiently to recognize them.  
 
For the second type of suspicious activities, unusual (or 
abnormal) activities, it is difficult to collect sufficient 
training data for supervised learning. In this case, many 
unusual activity detection algorithms, which require 
large numbers of training data, become unsuitable. 
Moreover, clusters for these activities may not be repre-
sentative enough to predict future unusual ones. Our 
proposed system addresses the lack-of-training-data 
problem of unusual activities by classifying any unrec-
ognized detected activity as a candidate to be suspicious 
one. Actually, this activity seldom occurs or has not been 
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observed before, i.e. having low statistical representation 
in the dataset. In this case, the activity needs further ex-
amination by a human operator. 

 
 
 

Suspicious Activity Detection Procedure:    

Inputs: Activity label (AcL) [output of the activity classifier]  

Output: Suspicious Activity,  Un-suspicious Activity  
Steps: 
1. If AcL is “Unknown” 
 2. Return “Suspicious Activity”  
3. Else if AcL exists in Suspicious Activity List 
 4. Return “Suspicious Activity”  
 Else 
 5. Return “Un-suspicious Activity” 

 
Fig. 8. The pseudo code of the Suspicious Activity Detection 

Procedure 

5 EXPERIMENTAL RESULTS 
In order to evaluate the performance of the proposed 

system, two benchmark datasets are used: Cornell CAD-
60 [26] and Cornell CAD-120 [19]. Both datasets have 
five different environments of a regular household in-
cluding bathroom, bedroom, kitchen, living room, and 
office. The datasets consider three to four common activ-
ities identified in each location with about 45 seconds of 
data for each activity and each person. The CAD-120 
extends the CAD-60 by separating high-level human-
object interactions (e.g. taking medicine, cleaning objects, 
microwaving food) and sub-activities like punching, 
reaching, and drinking.  
 
The Cornell CAD-60 dataset (available at: 
http://pr.cs.cornell.edu/humanactivities) has 60 RGB-D 
videos of four different subjects (two males and two fe-
males). They perform 12 high-level activity classes in-
cluding: rinsing mouth, brushing teeth, wearing contact 
lens, talking on the phone, drinking water, opening pill 
container, cooking (chopping), cooking (stirring), talking 
on couch, relaxing on couch, writing on whiteboard, and 
working on computer. Figure 9 shows some example 
frames of Cornell CAD-60 dataset. Note that some of the 
activity classes in  CAD-60 dataset contain only one sub-
activity (e.g. working on a computer, cooking (stirring), 
etc.) and do not contain object interactions (e.g. talking 
on couch, relaxing on couch). 
 
The second dataset used in the experiments is the Cor-
nell CAD-120 dataset (available at: 

http://pr.cs.cornell.edu/humanactivities). It contains 
120 activity sequences of ten different highlevel activities 
and ten different sub-activities. Four different subjects 
(two males and two females) perform each activity three 
times. They performed the activities through a long se-
quence of sub-activities, which varied from subject to 
subject significantly in terms of length of the sub-
activities and in the way they executed the task. The da-
taset contains a total of 61,585 RGB-D video frames. The 
ten high-level activities include: making cereal, taking 
medicine, stacking objects, unstacking objects, micro-
waving food, picking objects, cleaning objects, taking 
food, arranging objects, and having a meal, while sub-
activity labels include: reaching, moving, pouring, eat-
ing, drinking, opening, placing, closing, scrubbing, and 
null. Figure 10 shows some example frames of these sub-
activity labels. Note that the subjects perform the high-
level activities multiple times with different objects. For 
example, the stacking and unstacking activities were 
performed with pizza boxes, plates and bowls. Table 1 
specifies the set of sub-activities involved in each high-
level activity. For example, the “making cereal” activity 
consists of the following sub-activities: 1) placing bowl 
on table, 2) pouring cereal, 3) pouring milk. for “micro-
waving food” activity, it consists of: 1) opening micro-
wave door, 2) placing food inside, 3) closing microwave 
door. Note that some activities consist of same sub-
activities but are executed in different order such as such 
as stacking objects and unstacking objects. 
 
It should be mentioned that all experiments were im-
plemented on a 2.5GHz Intel Core i7 PC with 4GB 
memory, running under Windows 8 Enterprise. The 
proposed system is coded using MATLAB 8.1.0.604 
(R2013a). During the experiments, we used a cross-
subject training/testing setup in which we take out each 
subject (i.e., leave-one-subject-out scheme) from the 
training set and repeat an experiment for each of them. 
This means the proposed system was trained on three of 
the four people from whom data was collected, and test-
ed on the fourth. This is the same set-tings used in eval-
uating the state-of-the-art methods [16 - 21].  
 
Figure 11 and Figure 12 show the confusion matrices of 
the proposed system using Cornell CAD-60 dataset and 
Cornell CAD-120 dataset respectively. Each row repre-
sents the instances in an actual class (groundtruth label) 
and each column denotes the recognition results. For 
example in the second row of Figure 11, 94% of the 
“brushing teeth” samples are classified correctly while 
5% of the samples are misclassified as “rinsing mouth” 
activity and 1% are misclassified as “wearing contact 
lens” activity. As, it can be seen from Figure 11, the re-
sults prove the efficiency of the proposed method in rec-
ognizing differ-ent activities. The proposed system cor-
rectly classifies most activities. However, the perfor-
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mance is rather degraded with very similar activities. 
For example, “talking on the phone” is confused with 
“drinking water” and “cooking (chopping)” is confused 
with “cooking (stirring)”. Similarly, when we look at the 
confusion matrices in Figure 12, we can see higher val-
ues on the diagonal of the confusion matrix. They repre-

sent the activities that are correctly classified. The most 
difficult classes are “eating” and “scrubbing”. “Eating” 
is sometimes confused with the “drinking”, and “scrub-
bing” is likely to be confused with moving and placing. 
Also, “picking objects” is misclassied as “Taking food”. 
   

 
 

brushing teeth cooking (stirring) writing on whiteboard working on computer talking on phone wearing contact lenses 

      
      

relaxing on a chair opening a pill container drinking water cooking (chopping) talking on a chair rinsing mouth with water 

      
Fig. 9. Some example frames of Cornell CAD-60 dataset  

 
reaching placing moving drinking 

    

    

    
Fig. 10. Some example frames of Cornell CAD-120 dataset sub-activities 

 

TABLE 1 
 DESCRIPTION OF HIGH-LEVEL ACTIVITIES IN TERMS OF SUB-ACTIVITIES IN CORNELL CAD-120 

high-level  
activities 

sub-activities 

reaching moving placing opening closing eating drinking pouring scrubbing null 

Making Cereal √ √ √     √  √ 
Taking Medicine √ √ √ √  √ √   √ 
Stacking Objects √ √ √       √ 
Unstacking Objects √ √ √       √ 
Microwaving Food √ √ √ √ √     √ 
Picking Objects √ √        √ 
Cleaning Objects √ √  √ √    √ √ 
Taking Food   √ √ √     √ 
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Arranging Objects √ √ √       √ 
Having a Meal √ √    √ √   √ 
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rinsing mouth 92 4 2         2         

brushing teeth 5 94 1                   

wearing contact 
lens 5 3 87   5               

talking on the 
phone     1 76 23               

drinking water 3 2 5 21 69               

opening pill 
container           93   7         

cooking (chop-
ping)           8 66 26         

cooking (stirring)           7 19 74         

talking on couch       1         85 14     

relaxing on couch       3 6       3 88     

writing on 
whiteboard       7 4           89   

working on 
computer             3 2   5   90 

Fig. 11. The confusion matrix of the proposed system on Cornell CAD-60 dataset 
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reaching 94 4         2       

 

making  
cereal 100                   

moving  2 96   1     1       

 

taking  
medicine   98           1   1 

pouring    7 86   4   2     1 

 

stacking  
objects     95 5             

eating     5 79 12   4       

 

unstacking  
objects     6 94             

drinking 1     2 97           

 

microwaving 
food         100           

opening 1 2 1     90   5   1 

 

picking  
objects 1 2 1     90   5   1 

placing 1 1         98       

 

cleaning  
objects   3         94 2 1   

closing 2 3       7   88     

 

taking  
food       7       92   1 

scrubbing   1         9   89 1 

 

arranging  
objects           2 4   85 9 

null   1         1 1   97 

 

having  
a meal   1           3   96 

(a) Sub-activity labeling     (b) High-level activity labeling 

Fig. 12. The confusion matrices of the proposed system on Cornell CAD-120 dataset 

 
Moreover, we compare the performance of the proposed sys-
tem with several recent methods [16-21]. Table 2 summarizes 
the comparative results of the proposed system and some of 
the state-of-the-art methods [16-18] on Cornell CAD-60. The 
proposed system achieves a precision and a recall rate equal to 
83.4% and 81.2% respectively. Similarly, Table 3 shows the 
comparative results of the proposed system and another set of 
the state-of-the-art methods [19-21] on Cornell CAD-120. The 
proposed system achieves a recognition accuracy equal to 
91.6% and 94.4% for sub-activity and high-level activity re-
spectively. In [16-18], the performance results are reported in 
terms of precision, recall and FR0.5R. However, in [19-21], the re-
sults are expressed in terms of recognition accuracy. Hence, 
we use the same measures to present the performance of our 
proposed system. It is obvious from the results shown in both 
tables that the proposed system performs better than several 

state-of-the-art methods. Also, note that the results achieved 
on Cornell CAD-120 are rather better than those obtained on 
Cornell CAD-60. This is because the number of video se-
quences in CAD 120 is twice the number in CAD-60 hence it 
gives the chance for training any recognition method more 
effectively.  

TABLE 2 
PRECISION AND RECALL SCORES (%) OF THE PROPOSED SYSTEM 

COMPARED TO THE STATE-OF-THE-ART METHODS ON CORNELL CAD-
60 DATASET 

Method 
Cornell CAD-60 Dataset 

Precision Recall FR0.5R (Average) 

Sung et al.   
(2012) [16] 

67.9% 55.5% 61.7% 
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Ni et al.   
(2013) [17] 

75.9% 69.5% 72.7% 

Gupta et al.  
(2014) [18] 

78.1% 75.4% 76.8% 

The proposed system 83.4% 81. 2% 82.3% 

 
 

TABLE 3 
 RECOGNITION ACCURACIES OF THE PROPOSED SYSTEM COMPARED 

TO THE STATE-OF-THE-ART METHODS ON CORNELL CAD-120 DA-
TASET 

Method 
Cornell CAD-120 Dataset 

Sub-activity High-level Activity 

Koppula et al.   
(2013) [19] 

86% 84.7% 

Koppula & Saxena   
(2013) [20] 

89.3% 93.5% 

Hu et al.  
(2014) [21] 

87.0% NA 

The proposed system 91.6% 94.4% 

 

6 CONCLUSION 
Even with great efforts made for the recent decades, the 

recognition of human activities is still an immature technology 
that attracted plenty of people. Recently, with the availability 
of inexpensive RGB-D sensors, the problem of human activi-
ties recognition has become relatively easier and more robust. 
However, most of these works only address detecting actions 
that stretches over short time periods not activities. In this pa-
per, a skeleton-based human activity recognition system is 
proposed. The proposed system focuses on recognizing hu-
man activities not human actions. Human activities take place 
over different time scales and consist of a sequence of sub-
activities (referred to as actions). The proposed system recog-
nizes learned activities via trained Hidden Markov Models 
(HMMs). Experiments carried out on two benchmark datasets: 
Cornell CAD-60 and Cornell CAD-120. When compared to 
other skeletal-based solution our approach shows competitive 
performance. 
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